Why Use Cases?

• **Definition:** A use case is the description of a specific sequence of interaction between the user(s) and a technical system to achieve a specific goal
Introduction

- Workshop at DLR in Braunschweig
- Meeting of all stakeholders to discuss and derive Use Cases
- DLR IDeELab Theatre System was used to aid development process
Use Case Design Process

Function descriptions

Sequence diagrams

Main flow

Alternative flow

Traffic scenario sketches

Narratives
Sequence Diagrams

Demonstrator: BMW, CONTI, VTEC, VW
Use-Case 6.3: System initiated lane change

Main Flow A: System initiated lane change

- lane change possible
- lane change conducts
- lane change done
- lane change necessary
- actuator shall change lane
- feedback in display
- feedback visible for driver
- time

States and transitions:
- Unintended / unexpected
 - Changed / unchanged
 - Limits failure
- Intended / expected
 - Environmental change / unchanged
 - Normal
 - Normal driver only assisted
 - Partial automatic
 - Cond. automatic
 - High automatic
 - Full automatic
- Failure
 - Abuse/misuse
 - Unresponsive
 - Distracted
 - Sec. task
 - Drowsy

AdaptIVe Final Event, Aachen
Sequence Diagrams

Demonstrator: BMW, CONTI, VTEC, VW
Use-Case 6.3: System initiated lane change

Alternative Flow 1: System initiated lane change not possible due to lane obstruction

- lane obstruction detected
- actuator shall change lane
- steer back into lane
- feedback in display
- feedback visible for driver

states transitions

unintended / unexpected
- changed
- unchanged
- limits
- failure
- limits
- failure
- abuse/misuse
- unresponsive
- distracted
- sec. task
- drowsy

intended / expected
- environment
- vehicle
- automation
- steering wheel
- gas pedal
- brake pedal
- display
- lever/button
- driver

feedback visible for driver
Sequence Diagrams

Demonstrator: DAI, Ford, IKA
Use-Case 4.2: Parking In

States:
- Unintended/unexpected
 - Changed
 - Unchanged
- Intended/expected
 - Normal
 - Driver only assisted
 - Partial automation
 - Conditional automation
 - High automation
 - Full automation

Transitions:
- Limits failure
- Failure
- Abuse/misuse
 - Unresponsive
 - Distracted
 - Sec. task
 - Drowsy

Main Flow: Parking in

1. Position reached
2. System starts parking
3. Driver interacts with system

Time:

AdaptIVe Final Event, Aachen
// Sequence Diagrams

Demonstrator: DAI, Ford, IKA

Use-Case 4.2: Parking in

States
- Intended / Expected
 - Normal
 - Partial automated
 - Conditional automated
 - High automated
 - Full automated

- Unintended / Unexpected
 - Changed
 - Unchanged
 - Limits
 - Failure
 - Abuse / Misuse
 - Unresponsive
 - Distracted
 - Sec. Task
 - Drowsy

Transitions
- Changed
- Unchanged

Alternate Flow: Parkslot blocked
- System starts parking
- System stops vehicle
- System informs the driver
- Information to the driver

AdaptIVe Final Event, Aachen

9 // 29 June 2017
// Number of Use Cases

<table>
<thead>
<tr>
<th></th>
<th>Use Cases</th>
<th>Main Flows</th>
<th>Alternative Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close Distance</td>
<td>6</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Urban</td>
<td>7</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Highway</td>
<td>10</td>
<td>13</td>
<td>15</td>
</tr>
</tbody>
</table>
Conclusions

• The outcome of this design process are use case scenarios for automated driving in low, medium and high speed environments
• They serve as a baseline for functional requirements, research questions and human factors recommendations
• What is to be developed, what is out of scope
• Input to AdaptIVe deliverables on Use Cases and Requirements as well as Use Case Catalogue
Thank you.

Stefan Wolter
swolter3@ford.com