DAIMLER

Automated Driving Applications and Technologies for Intelligent Vehicles

Andreas Knapp Daimler AG

Sven Hötitzsch University of Würzburg

ITS World Congress 2015 Bordeaux, France 7. October 2015 Legal issues addressed in the EU funded AdaptIVe project

// Potentials for automated driving

Drivers are supported in demanding or repetitive tasks.
Travel comfort increases.

Vehicles dynamically adapt the level of automation according to the current situation.

Vehicles react more effectively to external threats.

Vehicles are resilient to different types of system and human failure.

// Motivation for automated driving functions

Zero emission Reduction of fuel consumption & CO₂ emission Optimization of traffic flow

Demographic change

Support unconfident drivers Enhance mobility for elderly people

Vision zero

Potential for more driver support by avoiding human driving errors

//The integrated project AdaptIVe

// Response 4

Legal issues - Response 4

// Response 4 partners

//Levels of driving automation

Driver in the loop

 No significant change with respect to existing driver assistance systems

Driver out of the loop

- Not in accordance with regulatory law (Vienna Convention of 1968, national road law)
- Shared responsibility for control between driver and system
 - need for action

Source: SAE document J3016, "Taxonomy and Definitions for Terms Related to On-Road Automated Motor Vehicles", issued 2014-01-16, see also http://standards.sae.org/j3016_201401/

Adapt ! Ve

// Challenges

Discuss need for action from an industry perspective

Pave road to market introduction of automated vehicles

Current legal situation does not allow automated vehicles on public roads.

Assess law and identify needed adaption

National laws can be different with respect to automated driving

Analyze main markets - project partners will contribute for their countries

When can a vehicle be considered safe?

Interpretation of existing law. Liability risks?

//Research tasks

System classification: Group categories of automated driving functions

Legal difficulties for market introduction of automated driving functions:

What are the **new risks** for the
manufacturer from
product liability

Usage and protection of data collected by automated driving functions

Protection against corruption and fraud of vehicle data and V2X data

// System classification

Systematic derivation of relevant system parameters for:

- Vehicle
- Driver
- Environment

Available to public as Deliverable 2.1 on the AdaptIVe website.

No.	Parameter	Range of values
1	Vehicle type	truck, car
2	Maneuver duration	short, long
3	Maneuver automation	Level 1 - 5
4	Maneuvervelocity	low, mid, high
5	Maneuver control force	low, mid, high
6	Maneuver time headway	standard, reduced, small
7	Maneuvertrigger	system initiated, driver approved, driver initiated
8	Maneuver Coordination	with coordination, without coordination
9	Driver's location	in vehicle, outside vehicle, tele-operated
10	Road type	type 1 -17 (see Table 4.7)

//Scenarios

Representative scenarios for assessment on a case by case basis, needed e.g. for product liability.

Based on system classification.

//Legal evaluation - road traffic law

Vienna Convention on Road traffic (1968)

- What means "to control" a vehicle from a legal perspective?
- Different adoptions of the Vienna Convention into national law

UNECE- Rules

- Area of conflict: Automated steering system (R 79: steering equipment)
- Driver have to remain at all times in primary control
- Automated commanded steering function only applicable in low speed or maneuvering operation

Changes in Road Traffic Law and Technical Admission Law are necessary

//Legal evaluation - liability

Liability:

The condition of being liable or answerable by law or equity

Distinction between the areas of law

Distinction between the liable parties:

- Challenges in context
 - Burden of proof
 - Insurance law

Legal uncertainties

//Legal evaluation - privacy and security

//Summary

Hurdles to overcome:

- Changes necessary in Regulatory and Technical approval law
- Uncertainties in liability law
- Open legal issues in data privacy law and data protection law

Response 4

Will point out key legal issues that are currently preventing market introduction of automated driving systems.

// Outlook

Automated Driving Applications and Technologies for Intelligent Vehicles

Thank you.

Andreas Knapp

Daimler AG +49 7031 4389 862 andreas.knapp@daimler.com