V2X Cybersecurity
Onn Haran, CTO
onn.haran@auto-talks.com

AdaptiVe Technical Workshop
Athens, Greece
21st April 2016
V2X and Autonomous Driving

• **V2X is a low-cost 360° sensor**
 ✓ Any weather, any visibility, any lighting
 ✓ Non-line of sight operation: intersection, behind trucks, curves, etc…

• **V2X facilitates road usage agreement between vehicles**
 ✓ Lane merge assistance

• **V2X is valuable for protecting Vulnerable Road Users (VRUs)**
 ✓ Motorcycles, pedestrians

• **V2X can provide accurate information from infrastructure**
 ✓ Traffic light status, signs

• **V2X enables Cooperative Adaptive Cruise Control (CACC)**

• **V2X will be mandated in every new vehicle in US**
System Diagram

- **V2X ECU**
 - Standalone or integrated in other ECU (i.e. Telematics)
 - Placed anywhere in vehicle (antenna, headliner, dashboard, …)

PLUTON
RF Transceiver

CRATON2
V2X Complete standalone solution

GNSS

Radar ECU

Camera ECU

Lidar ECU

ADAS ECU
V2X Security Basics

• Main V2X security goals are **Integrity** and **Authenticity**
 ✓ **Integrity**: Information should be protected against modification or deletion
 ✓ **Authenticity**: It should not be possible for an unauthorized user to pose as a valid user

• V2X communication is employing public-key cryptography to authenticate over-the-air messages
 ✓ Signatures are calculated according to Elliptic Curve Digital Signature Algorithm (ECDSA) using 256 bits long keys
 ✓ Each vehicle has many private-public key pairs
 ✓ Frequently changed for protecting vehicle user privacy
 ✓ Each public key is distributed in a certificate
 ✓ The certificates are signed by a certificate authority (CA)
 ✓ The same cryptographic solutions can be applied in US and Europe with only minor differences
V2X Security Functions

• **ECDSA signing**
 ✓ Attach a signature generated with a selected private key to an outgoing V2X message
 ✓ Key requirement: Secure storage

• **ECDSA verification**
 ✓ Check the correctness of a received signature based on an already verified public key
 ✓ Key requirement: Verification performance

• **Cybersecurity platform**
 ✓ Prevent harmful operations in V2X unit, other units of vehicle, and V2X units of other vehicles

• **Solution certification is essential to validate the security claims**
Potential Attacks

- **Attacking other ECUs in the vehicle via IVN (e.g. CAN)**
 - ✓ Remedy: IVN transmission is only possible from a secure execution domain

- **Sending fake messages to generate false alerts**
 - ✓ Remedy: Line-rate verification blocks all fake messages

- **Sending messages using stolen private keys**
 - ✓ Remedy: Private keys are securely stored

- **Worm spreading over-the-air**
 - ✓ Remedy: Minimal attack surface
 - ✓ Remedy: Secure gateway architecture limiting the capabilities of a compromised application
Tamper Resistant HSM

- Tamper-resistant HSMs will prevent a flood of stolen V2X private keys, potentially putting vehicle users at risk
 - As opposed to a tamper-evident HSM, a tamper-resistant HSM destroys secret keys when it detects a physical attempt to read them
 - Tamper-resistant HSM blocks cheap physical methods for copying private keys from a V2X device

- Side-channel protection prevents key extraction by monitoring time and static and dynamic power consumption

- A large amount of V2X certificate revocations will overwhelm the capacity of CRL distribution and storage systems

- Tamper-resistant HSM is best practice in industries where private keys are stored outside of a secure environment (e.g. credit cards)
Verify-All

- ECDSA verification of all incoming V2X messages
- Unverified V2X messages can never affect the vehicle
- No received message, including emergency, is ever missed
- Not requiring applications to decide whether a message should be verified
 ✓ Simplifies application security design and testing

- Assumptions about incoming message rate fail when it matters

- I-94 road, Galesburg, MI
- January 9th 2015
- 193 vehicles involved
Verification Cyber Attack Surface
Verify-All vs. Verify-on-Demand

- **Verify-All**
 - V2X facilities and apps are never exposed to untrusted data
 - Minimal potential contamination

- **Verify-on-Demand**
 - All layers are exposed to untrusted data
 - Any database can be contaminated
 - Imposing unquantifiable risk

Not exposed: BTP and vast majority of GeoNetworking code.
Exposed: WSMP and GeoNetworking basic header processing.
Cryptographic Agility

• Existing curves might be upgraded in the future

• Cryptographic agility is required
 ✓ Users will not agree to disable V2X after enjoying the benefits
 ✓ OEMs will have to replace equipment if not upgradable

• Design requirements
 ✓ Field update of curves
 ✓ Verification performance should be maintained at long curves
 ✓ Signing latency should be low at long curves
V2X Secure Gateway (V2X-SG)

- **Access** (LLC, MAC, PHY)
- **Net/transport** (WSMP or GN/BTP)
- **Applications** (incl. facility layer)
- **Gateway manager**
- **Security service** (e.g. 1609.2)
- **HSM (crypto, secure key storage)**

Current PP scope:
- Security aware
- Security unaware

Untrusted flow
- Install certificates & CRLs, configure security profiles
- Create/process secure PDU

Trusted flow
- Sign/verify/encrypt/decrypt

Service calls

V2X-SG
Deployed in an isolated software partition
Thank you!

Contact us at:
E-mail: info@auto-talks.com; Website: www.auto-talks.com